IQRM Online Assessment Test

This test will help you determine whether you should take <u>Intro to Quantitative Risk Management</u> (<u>IQRM</u>) before taking either <u>Financial Risk Management</u> or <u>Insurance Risk Management</u>.

If you answer fewer than **15 out of the 20 questions** below correctly, then we strongly suggest that you either a) successfully complete the IQRM course prior to registering for this FRM or IRM course, or b) select either <u>Strategic Risk Management</u> or <u>Operational Risk Management</u> as your elective to complete the Certificate.

Please allow yourself no more than 30 minutes to complete this test. Correct answers appear on the final page.

- 1. At 5% annual interest rates, how much principal does it take to earn 10 dollars per year forever (without reinvesting the payments)?
 - a) \$50
 - b) \$100
 - c) \$200
 - d) \$500
- 2. Out of 10 bonds, each with a 10% probability of default, what is the probability that 2 bonds default?
 - a) 2/10 * .1^2 * .9^8
 - b) .1^2 * .2^8
 - c) 2 Choose 10 * .1^5 * .9^8
 - d) 10 Choose 2 * .1^2 * .9^8
- 3. A 5 year zero coupon bond's yield to maturity increases by 1%. Approximately how much does the bond's value change by?
 - a) -5%
 - b) -1%
 - c) 0
 - d) 1%
 - e) 5%

4. A one year interest rate is 1% and a two year rate is 2%. Estimate the one year forward rate using continuous compounding?
a) 1% b) 2% c) 3% d) 5%
5. A factory produces widgets of average size 5.25 and standard deviation .25. What is the probability the size of a widget is less than 5.75?
a) .6826 b) .8413 c) .9772 d) .9986
6. A linear regression beta is 1.5 and the standard deviation of the beta is .5, what is the p-value of the beta?
a) .001 b) .022 c) .033 d) .044
7. The probability that a machine breaks when it's raining is 80%. The probability that it's raining is 10%. What is the probability that it rains and the machine breaks?
a) 2% b) 8% c) 18% d) 80%
8. Out of n trials, what is the probability that an event with probability p happens at least once?
 a) n Choose 1 * p^n * q^(n-1) b) n Choose n * p^0 * q^n c) 1 - (n Choose 0 * p^n) d) 1 - (n Choose 1 * p^n * q^(n-1))

- 9. What is the formula for covariance?
 - a) E[(x E(x))*(y-E[y])]
 - b) E[(x E(x))*(y-E[y])]/[sigma(x)*sigma(y)]
 - c) summation($(x-E(x))^2 * P(x)$
 - d) summation(x * P(x))
- 10. What is the formula for variance?
 - a) $E((x-E(x))^2)$
 - b) E[(x E(x))*(y-E[y])]
 - c) E[(x E(x))*(y-E[y])]/[sigma(x)*sigma(y)]
 - d) summation(x * P(x))
- 11. What does the value of the second derivative need to be in order to be sure that you are at a minimum?
 - a) 0
 - b) Inf
 - c) -Inf
 - d) Negative
 - e) Positive
- 12. How does the Duration of a bond relate to the first derivative of a bond's price?
 - a) dB/dy = D/B
 - b) dB/dy = D*(1+y)
 - c) dB/dy = -D*B/(1+y)
 - d) dB/dy = -D/(B/(1+y))
- 13. How do you use linear algebra to calculate the variance of a portfolio?
 - a) transpose(w)*w
 - b) w*transpose(w)
 - c) sum(diag(CovarianceMatrix))
 - d) transpose(w)*CovarianceMatrix*w

14. What distribution tests if two variances are the same?
a) Chi Square distribution
b) F distribution
c) Normal distribution d) T distribution
a, raistribation
15. What distribution tests if variance is equal to a certain value?
a) Chi Square distribution
b) F distribution
c) Normal distribution d) T distribution
d) Talstribation
16. How is the lognormal distribution constructed?
a) exp(x) where x is normally distributed
b) In(x) where x is normally distributed
c) log(ln(x)) where x is normally distributedd) log(x) where x is normally distributed
dy log(x) where x is normally distributed
17. The annual volatility of an interest rate is 12%. Approximately what is the daily volatility?
a) 12%/365
b) 12%/252
c) .75% d) 1%
d) 1%
18. In regression analysis, what is the formula for R-Square?
a) RSS/TSS
b) TSS/RSS
c) (1+RSS)/TSS d) 1-RSS/TSS
uj 1-1/33/133
10. How door a regression bota relate to covariance?
19. How does a regression beta relate to covariance?
a) Beta = $Cov(x,y)/(var(x)*var(y))$

b) Beta = Cov(x,y)/var(x)c) Beta = Cov(x,y)/var(x)d) Beta = Cov(x,y)/var(x)

20. An optimal hedging strategy minimizes the variance between an asset f and n futures contracts. What value of n solves argmin (n) var(S-nF?)

- a) Cov(S,F)/var(F)
- b) Cov(x,y)/(var(x)*var(y))
- c) Cov(x,y)/var(x)
- d) Cov(x,y)/var(x)

ANSWER KEY

- 1. c) \$200
- 2. d) 10 Choose 2 * .1^2 * .9^8
- 3. a) -5%
- 4. c) 3%
- 5. c) .9772
- 6. a) .001
- 7. b) 8%
- 8. c) 1 (n Choose 0 * p^n)
- 9. a) E[(x E(x))*(y-E[y])]
- 10. a) $E((x-E(x))^2)$
- 11. e) Positive
- 12. c) dB/dy = -D*B/(1+y)
- 13. d) transpose(w)*CovarianceMatrix*w
- 14. b) F distribution
- 15. a) Chi Square distribution
- 16. a) $\exp(x)$ where x is normally distributed
- 17. c) .75%
- 18. d) 1-RSS/TSS
- 19. b) Beta = Cov(x,y)/var(x)
- 20. a) Cov(S,F)/var(F)